Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 14: 727552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602978

RESUMO

Charcot-Marie-Tooth (CMT) disease is one of the most common genetically inherited neurological disorders and CMT type 2A (CMT 2A) is caused by dominant mutations in the mitofusin-2 (MFN2) gene. MFN2 is located in the outer mitochondrial membrane and is a mediator of mitochondrial fusion, with an essential role in maintaining normal neuronal functions. Although loss of MFN2 induces axonal neuropathy, the detailed mechanism by which MFN2 deficiency results in axonal degeneration of human spinal motor neurons remains largely unknown. In this study, we generated MFN2-knockdown human embryonic stem cell (hESC) lines using lentivirus expressing MFN2 short hairpin RNA (shRNA). Using these hESC lines, we found that MFN2 loss did not affect spinal motor neuron differentiation from hESCs but resulted in mitochondrial fragmentation and dysfunction as determined by live-cell imaging. Notably, MFN2-knockodwn spinal motor neurons exhibited CMT2A disease-related phenotypes, including extensive perikaryal inclusions of phosphorylated neurofilament heavy chain (pNfH), frequent axonal swellings, and increased pNfH levels in long-term cultures. Importantly, MFN2 deficit impaired anterograde and retrograde mitochondrial transport within axons, and reduced the mRNA and protein levels of kinesin and dynein, indicating the interfered motor protein expression induced by MFN2 deficiency. Our results reveal that MFN2 knockdown induced axonal degeneration of spinal motor neurons and defects in mitochondrial morphology and function. The impaired mitochondrial transport in MFN2-knockdown spinal motor neurons is mediated, at least partially, by the altered motor proteins, providing potential therapeutic targets for rescuing axonal degeneration of spinal motor neurons in CMT2A disease.

2.
Cancers (Basel) ; 13(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807778

RESUMO

Malignant melanoma is the most aggressive type of skin cancer with invasive growth patterns. In 2021, 106,110 patients are projected to be diagnosed with melanoma, out of which 7180 are expected to die. Traditional methods like surgery, radiation therapy, and chemotherapy are not effective in the treatment of metastatic and advanced melanoma. Recent approaches to treat melanoma have focused on biomarkers that play significant roles in cell growth, proliferation, migration, and survival. Several FDA-approved molecular targeted therapies such as tyrosine kinase inhibitors (TKIs) have been developed against genetic biomarkers whose overexpression is implicated in tumorigenesis. The use of targeted therapies as an alternative or supplement to immunotherapy has revolutionized the management of metastatic melanoma. Although this treatment strategy is more efficacious and less toxic in comparison to traditional therapies, targeted therapies are less effective after prolonged treatment due to acquired resistance caused by mutations and activation of alternative mechanisms in melanoma tumors. Recent studies focus on understanding the mechanisms of acquired resistance to these current therapies. Further research is needed for the development of better approaches to improve prognosis in melanoma patients. In this article, various melanoma biomarkers including BRAF, MEK, RAS, c-KIT, VEGFR, c-MET and PI3K are described, and their potential mechanisms for drug resistance are discussed.

3.
Cancers (Basel) ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825005

RESUMO

Telomerase provides cancer cells with replicative immortality, and its overexpression serves as a near-universal marker of cancer. Anti-cancer therapeutics targeting telomerase have garnered interest as possible alternatives to chemotherapy and radiotherapy. Oligonucleotide-based therapies that inhibit telomerase through direct or indirect modulation of its subunits, human telomerase reverse transcriptase (hTERT) and human telomerase RNA gene (hTERC), are a unique and diverse subclass of telomerase inhibitors which hold clinical promise. MicroRNAs that play a role in the upregulation or downregulation of hTERT and respective progression or attenuation of cancer development have been effectively targeted to reduce telomerase activity in various cancer types. Tumor suppressor miRNAs, such as miRNA-512-5p, miRNA-138, and miRNA-128, and oncogenic miRNAs, such as miRNA-19b, miRNA-346, and miRNA-21, have displayed preclinical promise as potential hTERT-based therapeutic targets. Antisense oligonucleotides like GRN163L and T-oligos have also been shown to uniquely target the telomerase subunits and have become popular in the design of novel cancer therapies. Finally, studies suggest that G-quadruplex stabilizers, such as Telomestatin, preserve telomeric oligonucleotide architecture, thus inhibiting hTERC binding to the telomere. This review aims to provide an adept understanding of the conceptual foundation and current state of therapeutics utilizing oligonucleotides to target the telomerase subunits, including the advantages and drawbacks of each of these approaches.

4.
J Vis Exp ; (156)2020 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-32090993

RESUMO

Neurons have intense demands for high energy in order to support their functions. Impaired mitochondrial transport along axons has been observed in human neurons, which may contribute to neurodegeneration in various disease states. Although it is challenging to examine mitochondrial dynamics in live human nerves, such paradigms are critical for studying the role of mitochondria in neurodegeneration. Described here is a protocol for analyzing mitochondrial transport and mitochondrial morphology in forebrain neuron axons derived from human induced pluripotent stem cells (iPSCs). The iPSCs are differentiated into telencephalic glutamatergic neurons using well-established methods. Mitochondria of the neurons are stained with MitoTracker CMXRos, and mitochondrial movement within the axons are captured using a live-cell imaging microscope equipped with an incubator for cell culture. Time-lapse images are analyzed using software with "MultiKymograph", "Bioformat importer", and "Macros" plugins. Kymographs of mitochondrial transport are generated, and average mitochondrial velocity in the anterograde and retrograde directions is read from the kymograph. Regarding mitochondrial morphology analysis, mitochondrial length, area, and aspect ratio are obtained using the ImageJ. In summary, this protocol allows characterization of mitochondrial trafficking along axons and analysis of their morphology to facilitate studies of neurodegenerative diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Paraplegia Espástica Hereditária/metabolismo , Animais , Axônios/metabolismo , Transporte Biológico , Células Cultivadas , Humanos , Dinâmica Mitocondrial , Neurônios/citologia , Prosencéfalo/citologia
5.
Curr Top Med Chem ; 20(6): 458-484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31916516

RESUMO

Telomeres function as protective caps at the terminal portion of chromosomes, containing non-coding nucleotide sequence repeats. As part of their protective function, telomeres preserve genomic integrity and minimize chromosomal exposure, thus limiting DNA damage responses. With continued mitotic divisions in normal cells, telomeres progressively shorten until they reach a threshold at a point where they activate senescence or cell death pathways. However, the presence of the enzyme telomerase can provide functional immortality to the cells that have reached or progressed past senescence. In senescent cells that amass several oncogenic mutations, cancer formation can occur due to genomic instability and the induction of telomerase activity. Telomerase has been found to be expressed in over 85% of human tumors and is labeled as a near-universal marker for cancer. Due to this feature being present in a majority of tumors but absent in most somatic cells, telomerase and telomeres have become promising targets for the development of new and effective anticancer therapeutics. In this review, we evaluate novel anticancer targets in development which aim to alter telomerase or telomere function. Additionally, we analyze the progress that has been made, including preclinical studies and clinical trials, with therapeutics directed at telomere-related targets. Furthermore, we review the potential telomere-related therapeutics that are used in combination therapy with more traditional cancer treatments. Throughout the review, topics related to medicinal chemistry are discussed, including drug bioavailability and delivery, chemical structure-activity relationships of select therapies, and the development of a unique telomere assay to analyze compounds affecting telomere elongation.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Telômero/efeitos dos fármacos , Antineoplásicos/química , Disponibilidade Biológica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Telomerase/antagonistas & inibidores , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
6.
Emerg Infect Dis ; 12(4): 647-52, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16704814

RESUMO

We conducted a systematic review of the scientific literature from 1966 to 2005 to determine whether animals could provide early warning of a bioterrorism attack, serve as markers for ongoing exposure risk, and amplify or propagate a bioterrorism outbreak. We found evidence that, for certain bioterrorism agents, pets, wildlife, or livestock could provide early warning and that for other agents, humans would likely manifest symptoms before illness could be detected in animals. After an acute attack, active surveillance of wild or domestic animal populations could help identify many ongoing exposure risks. If certain bioterrorism agents found their way into animal populations, they could spread widely through animal-to-animal transmission and prove difficult to control. The public health infrastructure must look beyond passive surveillance of acute animal disease events to build capacity for active surveillance and intervention efforts to detect and control ongoing outbreaks of disease in domestic and wild animal populations.


Assuntos
Bioterrorismo/estatística & dados numéricos , Surtos de Doenças/estatística & dados numéricos , Surtos de Doenças/veterinária , Vigilância de Evento Sentinela/veterinária , Animais , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/veterinária , Bioterrorismo/prevenção & controle , Surtos de Doenças/prevenção & controle , Humanos , Viroses/epidemiologia , Viroses/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...